
Cornell University

ECE 5720 - Introduction To Parallel Computing

Final Project Report - Game of Life on CUDA

Yu Zhang (yz2729) Bin Xu (bx83) Hongyi Wu (hw727)

May 16, 2022

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

Introduction
Game of life is a well-known cellular automaton invented by Cambridge mathematician John

Conway. Cited from Wikipedia, it is a zero-players game, which means that its evolution is based on

its initial state, requiring no further input. Players can only decide the initialization information of

the game and then observe the game evolves in generations.

The scene of the game is set on an infinite two-dimensional board. Each cell of the board is in one

of two possible states, live or dead which depends on the number of living cells around it. Every cell

can only interact with its 8 connected neighbours. The rules of Game of life can be summarized by

following items:

• Any live cell with fewer than two live neighbours dies, as if by under population

• Any live cell with two or three live neighbours lives on to the next generation

• Any live cell with more than three live neighbours dies, as if by overpopulation

• Any dead cell with exactly three live neighbours becomes a live cell, as if by reproduction

The rules can be observed in Figure 1.

Figure 1: Rules of GoL

This project aims to compare performance of CPU and GPU in evaluation of Game of Life. The

performance is tested by three different implementations: CPU sequential version, CPU parallel

version and GPU parallel version. In the following sections, we will first introduce the motivation

of our project, present our algorithm design and implementation, then show the computational

results, and finally conclude.

1

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

Motivation
Our motivation can be summarized in the following three points:

• The implementation of Game of life should be a very typical example of the value of paral-

lelization. It is set on an infinite grid, have the feature to be split into different parts, computed

separately

• With such a computational process, we can improve the computational efficiency of the game

and reduce the computation time. In addition, implementing Game of Life with multiple

threads is more efficient because parallel computing can directly takes the advantage of the

GPU

• The Game of Life can be easily visualized on their iterations so we can have more intuitive

demos about the benefit of computation

Design & Implementation
In this section, we will describe in detail the design and implementation of our program, which

is divided into four parts: CPU sequential design, CPU parallel design, GPU parallel design, and

visualization design.

CPU Sequential

The design of the CPU sequential is very straightforward. Its algorithmic flow is shown in Figure 2.

First we initialize the data at the beginning of the matrix, and then iterate through the matrix to

calculate the next state of each cell in each iteration, and then update the data and go to the next

iteration until the end of the iteration.

Figure 2: CPU Sequential

2

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

The implementation of CPU sequential is also not complicated. Inside each iteration, we compute

the matrix of the next state based on the matrix of the previous state each time. And the next state

is saved in the previous state for the next iteration. When updating the matrix, we iterate through

the values of each cell in the previous state and the values around it to calculate its surviving state

in the next state. The code to update the matrix is shown in code listing 1.

/* ************ World calculation ************** */
void updateMatrix(int **prev , int **succ , int m, int n)
{
/* ************ Parameters Define ************** */

int alive , p, q, i, j;

/** Go through 8 neighbours , find num of lives **/
for (p = 1; p < m - 1; p++){

for (q = 1; q < n - 1; q++){
alive = 0;
for (i = -1; i <= 1; i++){

for (j = -1; j <= 1; j++){
alive += prev[p + i][q + j];

}
}
// Deduct cell itself
alive -= prev[p][q];

//Rule 1: underpopulation
if (alive < 2 && prev[p][q] == 1){

succ[p][q] = 0;
}
//Rule 2: overpopulation
else if (alive > 3 && prev[p][q] == 1){

succ[p][q] = 0;
}
//Rule 3: reproduction
else if (alive == 3 && prev[p][q] == 0){

succ[p][q] = 1;
}
//Rule 4: No change
else{

succ[p][q] = prev[p][q];
}

}
}

}

Listing 1: Update World - CPU Sequential

3

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

CPU Parallel

The flow of CPU parallel computing is actually very similar to the flow of CPU sequential, the biggest

difference lies in the iterative part. As shown in figure 2, we use OpenMP to implement CPU parallel

computing on the iterative part. Using OpenMP to open multiple threads to update the matrix can

greatly increase the speed of computation.

Figure 3: CPU Parallel

When updating the matrix, we first set the number of threads with omp parallel num_threads(8) ,

and then use pragma omp for schedule(static) to declare the code for parallel operations.

Finally, after updating the matrix, we use pragma omp barrier to synchronize the progress of all

threads. The code for updating matrix in CPU parallel mode is shown in code listing 2.

/* ************ World calculation ************** */
void updateMatrix(int **prev , int **succ , int m, int n)
{
/* ************ Start OpenMP ************** */

#pragma omp parallel num_threads (8) // Set treads to 8
#pragma omp for schedule(static) // OpenMP parallel for

/** Go through 8 neighbours , find num of lives **/
for (int p = 1; p < m - 1; p++){

for (int q = 1; q < n - 1; q++){
int alive = 0;
for (int i = -1; i <= 1; i++){

for (int j = -1; j <= 1; j++){
alive += prev[p + i][q + j];

}
}

// Deduct cell itself
alive -= prev[p][q];

4

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

//Rule 1: underpopulation
if (alive < 2 && prev[p][q] == 1){

succ[p][q] = 0;
}
//Rule 2: overpopulation
else if (alive > 3 && prev[p][q] == 1){

succ[p][q] = 0;
}
//Rule 3: reproduction
else if (alive == 3 && prev[p][q] == 0){

succ[p][q] = 1;
}
//Rule 4: No change
else{

succ[p][q] = prev[p][q];
}

}
}
#pragma omp barrier // Synchronize

}

Listing 2: Update World - CPU Parallel

GPU Parallel

Figure 4: GPU Parallel

The algorithm of GPU parallel computing can be found in figure 4. The main structure is the same

as the OpenMP. Before each iteration, the program generates a map with the desired size. Then

copy the map from host to device for GPU calculation. Before the final solution, the data will not be

transmitted between CPU and GPU. After each iteration, the CUDA kernel function will be executed.

At the end of each iteration, the program synchronizes the data.

5

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

Figure 5: Cuda Kernel Function - Global Memory

Two versions of CUDA kernel functions are implemented with global memory and shared memory.

Global memory is faster than shared memory, according to the theory. For the global version, shown

in figure 5, after entering the kernel function, the system allocates each map cell a thread with IDx

and IDy. A grid size 256*256 and block size 32*32 is used in this program because of the iteration of

world size. For those threads that exceed the world size, we pass the execution. The others compute

the alive neighbors with global memory, process the unit, and update the information.

6

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

Figure 6: Cuda Kernel Function - Shared Memory

The shared memory version is similar and shown in figure 6. The difference could be another

judgment of the cell’s neighbors within the block’s dimension. If the neighbors are all inside one

block, we can use the shared memory directly. In contrast, we should copy the neighbors from

global memory. Although the initiative is to accelerate the computation, there are some missing

points in this design. The device needs to synchronize at the end of each iteration, which means

that the fast memory access should wait for the slow global access. If the world is defined as the size

of a block 32*32, the size could be too small, and the primary consumption could be copying data

or other executions.

Visualization

As shown in the figure 7, Our visualization solution is that we store the intermediate results of each

frame into an txt file. Then, we implemented a simple JavaScript application that can read the data

by frame in the txt file according to the time interval we set. The time interval is calculated based

on the total time we run and the number of iterations. In the actual demonstration, we artificially

scaled up the runtime by a factor of 10,000 in order to amplify their differences.

7

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

Figure 7: Visualization Design

The code to update the front-end page is shown in code listing 3, which reads the data inside the txt

file at the time interval we set to dynamically update the front-end interface.

runIteration () {
let newBoard = this.makeEmptyBoard ();
if(this.state.counter !== this.props.matrix_data.length){

for (let x = 0; x < this.rows; x++) {
for (let y = 0; y < this.cols; y++) {

newBoard[x][y] = this.props.matrix_data[x + this.state.
counter][y] === 1 ? true : false;

}
}
this.board = newBoard;
this.setState ({ cells: this.makeCells (), counter: this.state.counter

+ 50, time: this.state.time + this.props.interval /10000 });

this.timeoutHandler = window.setTimeout (() => {
this.runIteration ();

}, this.props.interval);
} else{

this.stopGame ()
this.setState ({ counter: 0 });

}
}

Listing 3: Update World - Front-end

8

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

Result

Figure 8: Result - Speed Comparison among different implementations

From the figure 8 we can see two findings:

• Generally, CUDA is faster than CPU parallel and CPU sequential and CPU parallel is faster

than sequential one.

• As we increase the world size, we find the speed up of the GPU parallel gets faster and faster,

it is because we increase the computing threads during the increasing and it has not reached

the maximum threads.

Figure 9: Result - CPU Speed Comparison

From the figure 9 we can see the as we increase the world size

• the speed up of the three methods get increased when the world size is smaller than 48, and

they are not stable. However, after the world size get larger, the results seemed to be stable

and proportional.

• We can see the proportion corresponds how many CPU kernels we used for the computing

which verify the correction of the implementation.

9

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

From the figure 8 we can see

Figure 10: Result - GPU speed Comparison

The speed of the Dynamic method and the shared memory method is similar and the dynamic

solution is slightly faster than the shared memory method. It could be because of data swap of the

world boundary.

Figure 11: Result - Speed Comparison

The Figure 11 shows as we increase the iterations of the algorithm, we find the GPU dynamic is not

so stable as the speed changed in different iterations.

Figure 12 shows the visualization of results in the web page we designed. There are three checker-

boards on our web page, representing the CPU sequential, CPU parallel and GPU parallel respec-

tively. Once the run button clicked, it means that this type of computation starts to run. We can see

that GPU parallel is the first to finish, followed by CPU parallel, and the slowest is CPU sequential.

It takes about twelve seconds.

10

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

Figure 12: Result - Visualization

Challenges
The challenges we encountered in this project were in two main areas.

The first aspect is how to visualize the results.Initially we want to perform dynamic visualization

about the while computing, however it seem quite challenging, so we make visualization with

computed results and tested time.

The second part is about how to allocate GPU resources. After repeated experiments, we have

succeeded in getting the best results by using grid, block and threads to solve the implementation

and computation of a large-scale game map.

Conclusion
This project presented three different evaluation algorithms for Conway’s Game of Life: CPU

sequential, CPU parallel and GPU parallel. All three algorithms are carefully implemented and the

visualization of their results are provided. The best algorithm among of them is the GPU parallel

algorithm. It is thousands of times faster than other algorithms. Our findings can be summarized in

five points as follows:

• Under most conditions, the more threads using, the faster the computation it performs

• For CPU parallel, the relation between execution speed and number of threads is linear

• Dynamic method performs slightly better than the shared memory method for GPU

• For GPU parallel, the larger block size, the faster computation

• When the world size is very small, a single master thread performs far better than parallel

computing

For contribution, all team members were involved in the entire process. Hongyi Wu was mainly

responsible for the CPU part, Bin Xu was mainly responsible for the GPU part, and Zhang Yu was

mainly responsible for the visualization part.

11

ECE 5720 Final Project Report Yu Zhang Bin xu Hongyi Wu

Reference
[1] Conway J. The game of life[J]. Scientific American, 1970, 223(4): 4.

[2] Fišer, M. (2013, March). Conway’s Game of Life on GPU using CUDA: Introduction – Marek-

Fiser.com. http://www.marekfiser.com/Projects/Conways-Game-of-Life-on-GPU-using-CUDA

[3] React-GameofLife source code https://github.com/charlee/react-gameoflife

12

http://www.marekfiser.com/Projects/Conways-Game-of-Life-on-GPU-using-CUDA
https://github.com/charlee/react-gameoflife

